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Counterion-mediated, non-pairwise-additive attractions in bundles of like-charged rods

B.-Y. Ha and Andrea J. Liu
Department of Chemistry and Biochemistry, University of California at Los Angeles, Los Angeles, California 90095

~Received 18 February 1999!

Stiff polyelectrolyte chains, such as DNA, can attract each other in solution even though they have the same
sign of charge. The attractions are mediated by multivalent counterions, which lead to an effective interaction
at the two-chain level that is attractive at short range and repulsive at long range. However, the effective
interchain interactions are not pairwise additive. We present a formulation that allows theoretical treatment of
the many-chain problem without assuming pairwise additivity. We show that a bundle of chains held together
by counterion-mediated attractions can be described in terms of a bulk and surface free energy, and discuss the
temperature dependence of the attraction.@S1063-651X~99!00907-1#

PACS number~s!: 87.14.Gg, 87.15.2v, 61.20.Qg, 61.25.Hq
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I. INTRODUCTION

Experiments on solutions of stiff polyelectrolyte chain
such as DNA@1# or F-actin@2#, clearly show that the like-
charged chains can attract each other in the presence of
tivalent ions of the opposite sign~counterions!. Even long,
stiff, charged viruses such as the tobacco mosaic virus an
virus, which can be regarded as thick, stiff polyelectrolyt
exhibit attractions@2#. The fact that the attractions are o
served for a wide range of stiff polyelectrolytes and a vari
of multivalent counterions indicates that specific interactio
are not responsible. Rather, there appears to be a ge
electrostatic mechanism that depends primarily on the
lency of the counterion.

Another striking experimental feature is that the attra
tions do not appear to lead to macroscopic phase separa
Instead, the chains tend to form dense bundles of a fa
well-defined thickness@1,2#. Thus, the counterion-mediate
interaction between the chains appears to have a diffe
character from ordinary attractions that lead simply to ph
separation at sufficiently high concentrations.

In addition to integral equation methods@3#, two theoret-
ical approaches have been used to explain the attract
The first approach@4–7# was originally proposed by Oosaw
@4# nearly thirty years ago, and is based on a charge fluc
tion picture. In this picture, nonuniformities in the density
condensed counterions~i.e., counterions near the chain!
along the chain length give rise to nonuniformities in t
charge distribution that can become correlated from
chain to another, leading to a van der Waals-like attract
This attraction increases with decreasing temperature,
cause the interchain charge correlations increase as the
trostatic interchain interaction increases relative to the th
mal energy@5#. The valence of the counterion is importa
because the attraction between chains must be strong en
to overcome the repulsion due to the net charge on e
chain. As the counterion valency increases, the attrac
grows and the repulsion shrinks@6#. The second approac
@8–11#, originally proposed by Rouzina and Bloomfield@9#,
is based on a zero-temperature picture. At zero tempera
a system of chains and counterions should form a perf
neutral ionic crystal, and it is not surprising that the intera
tions between chains are effectively attractive. The ma
PRE 601063-651X/99/60~1!/803~11!/$15.00
,

ul-

fd
,

y
s
ral

a-

-
on.
ly

nt
e

ns.

a-

e
.
e-

lec-
r-

gh
ch
n

re,
t,
-
i-

mum depth of attraction decreases as the temperature
creases and the ionic crystal melts@8#. A closely-related
zero-temperature picture was recently proposed by Le
and Kornyshev@12#. They suggest that the helical structu
of DNA and the preference for specific binding sites on t
DNA chain, rather than the condensed counterion inter
tions, determine the periodic structure for ions at ze
temperature that gives rise to an attraction.

Recently, we showed that the charge-fluctuation a
ionic-crystal pictures are not contradictory, but actually a
complementary to each other@13#. When we incorporated
the nonzero ionic radius into the charge fluctuation approa
we found oscillatory charge correlations that grow in ran
as the temperature is lowered, and eventually diverge at
spinodal for the ionic crystal. Thus, at higher temperatu
where the charge correlations are liquidlike, a charge fl
tuation picture might more accurately describe the origin
the attraction, but at lower temperatures where the cha
correlations are solidlike, the ionic crystal is a better desc
tion. We note that molecular dynamics simulations
Stevens@14# show that counterions diffuse quite rapidly an
freely within the bundles, and are therefore not frozen in
crystalline arrangement.

In previous papers, we have shown that our results ar
quantitative agreement with simulations@8# of the interaction
between two infinite rods@6#, but that the form of the two-
rod interaction is not particularly useful because the effect
interactions among rods are not pairwise-additive@7#. This is
because the charge distributions on the rods can be affe
by the presence of another rod. By calculating the free
ergy of an N-rod bundle explicitly, we showed that th
breakdown of pairwise additivity leads to qualitative chang
in the behavior of bundles. The assumption of pairwise
ditivity leads to the prediction that the equilibrium bund
size is finite, but the explicit calculation shows that the eq
librium bundle size is infinite. This appears to contradict t
experimental observation of a well-defined finite bundle si
However, numerical simulations by Stevens@14# and a re-
cent theoretical argument@15# suggest that the kinetics o
bundle formation might set the bundle size, so that the s
tem never reaches equilibrium.

The primary purpose of this paper is to provide a detai
description of our theoretical approach. Our model and
803 ©1999 The American Physical Society
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804 PRE 60B.-Y. HA AND ANDREA J. LIU
calculations that lead to a closed form expression of the
energy of a bundle ofN rods are presented in Sec. II. F
small N, the free energy can be evaluated numerically
diagonalizingN3N-dimensional matrices@7#. In the largeN
limit, it is possible to analyze the free energy analytica
@16#. We have shown that in the salt-free case, it is poss
to describe the free energy of a large bundle in terms o
bulk free energy and surface free energy@16#. In Sec. III, we
extend the asymptotic analysis to the case of added sa
Sec. IV, we address the controversial question of
temperature-dependence of the attraction. In Ref.@13#, we
showed that it is necessary to incorporate the nonzero ra
of the ions in order to capture the correct temperature dep
dence of the charge correlations. Here, we show that
ionic size is also crucial to the temperature dependence o
inter-rod attractions. Once the ionic size is taken into
count, we find that the depth of attraction increases as t
perature decreases, in agreement with simulations@8#. Sec. V
examines the dependence of our results on the lattice s
ture within the bundle. Finally, Sec. VI summarizes the a
vantages and disadvantages of our approach.

II. MODEL AND FREE ENERGY

A. Model

In our calculations, we study a bundle ofN negatively-
charged rods parallel to thez-direction and placed on a lattic
in the xy-plane. Inside a condensed DNA bundle, the co
centration is very high, with a center-to-center chain spac
of 25 Å ~DNA itself has a diameter of roughly 20 Å!; at
comparable bulk concentrations, DNA packs in a hexago
lattice @17#. Our analytical expressions are completely ge
eral and apply to any lattice structure, but we have typica
assumed a square lattice for our numerical calculations.
will discuss the dependence on lattice structure in Sec. V

Each rod consists ofM monomers of lengthb, and each
monomer carries a negative charge of2 f 0 ~in units of the
electronic chargee) that is assumed to be distributed un
formly. Note that the actual charge distribution for DNA
helical; this nonuniform distribution can also lead to attra
tions at very short distances and low temperatures@12#, but
we have not adopted this more realistic description here.
positively charged counterions have radiusr c and chargeZ.
In reality, the counterions are distributed with some spa
density profile around the rods, which can be approxima
by the solution to the nonlinear Poisson-Boltzmann equat
We adopt the two-state approximation to describe this d
sity distribution; that is, we divide the counterions into tw
classes, condensed and free@4,18#. A condensed counterion
is approximated to lie on the nearest monomer, and to a
chargeZ to the net charge of that monomer, while a fr
counterion contributes to Debye screening of the electros
interactions in the solution. Note that recent calculations
Kardar and Golestanian@19# avoid the two-state assumptio
by expanding around the Poisson-Boltzmann result. Th
calculation provides some justification for the two-sta
model: when they approximate the counterion distribut
with a step function, they recover our results. Expand
around the Poisson-Boltzmann solution with its spatial d
tribution of counterions~without assuming a step function! is
a definite improvement over our theory, but this approac
e
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quite complicated to apply to our bundle system, and it a
assumes point ions. Although our two-state approach
crude, it does allow us to include the nonzero ionic radius
we have done in Sec. IV.

We define f c to be the average number of condens
counterions per monomer; we do not assume thatf c is de-
termined by the Manning criterion, but solve for it sel
consistently as a function of the number of rods and
lattice constanta. Because condensed counterions can m
along the rods or exchange with free counterions, the ef
tive charge of a monomer can fluctuate. The charge
monomers of rod j can assume the values

qj~s!52 f 01mZ, ~1!

wherem50,1,2,3, etc. is the number of condensed count
ons occupying a given monomer. If we assume that a la
number of condensed counterions can be assigned to a g
monomer, then we can apply the central limit theorem to
charge distribution, and can treat the charge per monom
qj (s) as a Gaussian variable. Thus, we characterize
charge distribution by two quantities: the net charge on
rod and the variance in the charge of a monomer on the
given, respectively, by

q[^qj~s!&q , dq2[^„q~s!2^qi~s!&…2&q5Z2f c , ~2!

where the averagê. . . &q is over all realizations of charge
distribution. Note that identical expressions forq anddq2 in
terms of f c and Z have been derived by an independe
method by Golestanian@20#.

In the absence of interactions, charges at different s
are assumed to be uncorrelated:

^dqi~s!dqj~s8!&q5d i j d~s2s8!. ~3!

In addition to the charges on the rods, there are mobile i
in solution ~free counterions and salt ions!. We allow for
these by including free ions labeled by the indexa, carrying
chargeqa . For simplicity, we assume that the counterio
are identical to one of the ionic species of the added s
although the theory can easily be extended to the more g
eral case. We also assume that the concentration of rod
very low, so that the concentration of free ions is negligib
compared to the concentration of salt ions~this is true under
experimental conditions@1,2#!. In this case, the mobile ion
can be treated as overall neutral@21#. Finally, it is useful to
introduce the Bjerrum length,l B5e2/ekBT, namely the
length scale at which the electrostatic energy is compara
to the thermal energykBT. We will also use the dimension
less Bjerrum length in units of the monomer length,l̃ B
[l B /b. The Manning-Oosawa parameter@4,18#, a measure
of the ratio of the electrostatic energy to the thermal ener
is given byj5 l̃ Bf 0 in our notation.

In terms of the charge variablesqj (s) on the rods and the
mobile ionsqa , along with their associated positionsr j (s)
and ra , the electrostatic interaction Hamiltonian is



s
-
le
ns

tw
bi

lac
he
ti

th
re

th

n,

b

-
ian

dis-

on
ns-
e-
n-

-
uc-
-
sian

nal
ach
ee-

ne-
lf
ye-

ich
m-
en

PRE 60 805COUNTERION-MEDIATED, NON-PAIRWISE-ADDITIVE . . .
bH5
1

2
l BF(

i j

N

(
ss8

M
qi~s!qj~s8!

ur i~s!2r j~s8!u

12(
i

N

(
s

M

(
a

qi~s!qa

ur i~s!2rau
1(

aa8

qaqa8

ura2ra8u
G . ~4!

Charge neutrality requires( j (sqj (s)1(aqa50.

B. Derivation of free energy

The system can adjust the monomer chargesqi(s) but not
their positionsr i(s). It can also adjust the free ion position
ra , but not their chargesqa . The partition function is there
fore the sum over all realizations of the charge variab
qi(s) and the functional integral over the free ion positio
ra :

Z5E Dra^e2bH&q5E DraE Dqi~s!e2bH, ~5!

where the electrostatic Hamiltonian is given by Eq.~4!. To
see the effect of mobile ions on the interaction between
charges on the rods, we integrate over positions of mo
ions first. In order to treat the two-bodyqaqb interactions,
we use the Hubbard-Stratanovich transformation to rep
the two-body interactions with a one-body interaction of t
charge with an effective dimensionless electrostatic poten
C(r ):

Z5E DraK K expH 2
1

2
l BF(

i j

N

(
ss8

M
qi~s!qj~s8!

ur i~s!2r j~s8!u

12(
i

N

(
s

M

(
a

qi~s!qa

ur i~s!2rau
1 i(

a
qaC~ra!G J L

q
L

C

.

~6!

Here, the average over realizations ofC,^•&C is with respect
to the probability distribution

WC5expF2
1

2E E drdr 8C~r !v21~r ,r 8!C~r 8!G , ~7!

wherev21(r ,r 8) is the inverse ofbv(r ,r 8)5l B /ur2r 8u.
Equation~6! is exact, and for point chargesqa , the aver-

ages can be carried out exactly. However, we assume
fluctuations in the density of mobile ions are small, and
tain only terms in Eq.~6! up to orderC2. We make this
approximation in order to treat the mobile charges and
fixed charges on the rods in a consistent way.

Up to O(C2), the partition function is then given by

Z}expF2
1

2
tr ln~11bnsv !2

1

2
b tr~nsv̄ !G

3E Dqj~s!E Dra

3expF2
1

2
b(

i j
(
ss8

qi~s!qj~s8!v̄„r i~s!2r j~s8!…G .

~8!
s

o
le

e

al
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e

Here, we have used the matrix

ns~r ,r 8!5nsd~r2r 8!, ~9!

wherens is the number density of mobile ions. In additio
we have introduced the effective interactionv̄, defined by

v̄~r ,r 8!5@v211ns#
21~r ,r 8!. ~10!

This effective interaction is simply the screened Coulom
interaction, given in Fourier space by

b v̄~q!5
4pl B

q21ks
2

, ~11!

whereks
258pl BI , whereI is the ionic strength of the solu

tion. Thus, tracing over the mobile ion positions at Gauss
order is equivalent to Debye-Hu¨ckel theory@5#. The Gauss-
ian approximation is valid whenekBT.Z2e2ns

1/3 ~in the case
of a Z:Z salt! @22#.

The next step is to average over all possible charge
tributions on the rods@the average overqj (s)#. Note that we
still have a two-body screened Coulomb interacti
qi(s)qj (s8). We again use the Hubbard-Stratanovich tra
formation to replace this two-body interaction with a on
body interaction of the charge with an effective dimensio
less electrostatic potentialF(r ):

Z5K K expF2 i (
j 51

N

(
s51

M

qj~s!F„r j~s!…G L
q
L

F

, ~12!

where the average over realizations ofF,^•&F , is with re-
spect to the probability distribution

WF5expF2
1

2E E drdr 8F~r !v̄21~r ,r 8!F~r 8!G , ~13!

where v̄21(r ,r 8) is the inverse ofb v̄(r ,r 8)5l Bexp@2ksur
2r 8u#/ur2r 8u. The averages overqj (s) andF(r ) cannot be
evaluated exactly so we again retain only terms in Eq.~12!
up to orderF2. This amounts to keeping two-point correla
tions in the condensed counterions by taking Gaussian fl
tuations inqj (s) @6#, and is valid when the charge fluctua
tions along the rods are not strong. Just as the Gaus
approximation forC led to Debye-Hu¨ckel theory for the
mobile ions, the Gaussian approximation forF leads to a
one-dimensional Debye-Hu¨ckel theory for the monomeric
charges. However, it is not a standard one-dimensio
theory because the monomeric charges interact with e
other, and with the charges on other rods, via thr
dimensional screened interactionsv̄. In other words, our ap-
proximation is equivalent to treating each rod as a o
dimensional Debye-Hu¨ckel system that interacts with itse
and with all the other rods via a three-dimensional Deb
Hückel system of mobile ions.

Because of the geometry of the many-rod system, wh
is nonuniform with the rods in specified positions, the co
putation of the interaction between rods is nontrivial, ev
up to orderF2. We first integrate overF to obtain a compact
expression for the rod-rod interaction:
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bFbundle5
1

2
q2l̃ B(

i j
(
ss8

@d i j 2~11bdq2v̄ ! is, js8
21

#
1

dq2

1
1

2
tr ln@11bdq2v̄#2~self-energy!, ~14!

where the trace ‘‘tr’’ is over all rods and monomers. If th
rods are not parallel or ifN is finite, the free energy in Eq
~14! cannot be diagonalized, and the free energy must
computed numerically.

The following discussion of how to further simplify Eq
~14! applies only when the rods are parallel and infinite
long. In that case, we can use translational invariance a
ve

d

e

g

the rod axes to write the matrix element (v̄) is, js8 as
( v̄) is, js85( v̄) i , j ;us82su . The free energyFbundle can then be
partially diagonalized by introducing a Fourier transform
the z-direction ~along the rod axes!. For example, note tha
the trace that appears in Eq.~14! can be written out as

1

2
tr ln@11bdq2v̄#5(

is
(

l 50

`
~21! l 11

l
~bdq2! l~ v̄ l ! is,is .

~15!

We now Fourier transform froms to kz and replace the
convolution integral with a product of the Fourier tran
formed matrix elements:
~16!

whereb v̄ i j (kz)52l̃ BK0(Ri jAks
21kz

2), with Ri j the distance between rodsi and j andRii [b. We then have

~17!
of
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Similarly, the inverse matrix that appears in Eq.~14! is

(
i j

(
ss8

~11bdq2v̄ ! is, js8
21

5(
i

. . . (
i l

(
s

. . . (
sl

(
l 50

~21! l

3~bdq2! l v̄ is,i 1s1
. . . v̄ i l 21sl 21 , js8 . ~18!

If we have translational invariance, then the summation o
$s% can easily be performed; in terms of0v̄ i j [ v̄ i j (kz50), we
have

(
s

. . . (
s8

v̄ is,i 1s1
. . . v̄ i l 21sl 21 , js85L0v̄ i ,i 1

. . . 0v̄ i l 21 , j .

~19!

Both terms in Eqs.~16! and ~19! can be resummed. If we
define matricesM (k) and 0M to be

0Mi j 5dq22d i j 12l̃ BK0~ksRi j !,

Mi j ~kz!5dq22d i j 12l̃ BK0~Ri jAks
21kz

2!, ~20!

then the electrostatic free energy per monomer of the ro
for a!L, is
r

s,

bFbundle~a!5
1

2
q2(

i j
Fd i j 2

1

dq2
0Mi j

21G 1

dq2

1
b

2E2`

` dkz

2p
ln@detdq2M ~kz!#2bNdq2l̃ B

3E
2`

` dkz

2p
K0~bAks

21kz
2!, ~21!

whereK0(x) is the zeroth-order modified Bessel function
the second kind.

The first term in Eq.~21! represents the effective repu
sion among the rods, which is screened due to the conde
counterions and mobile ions. The second term represents
attraction due to fluctuations in the monomeric charge. Wh
N52, then the free energy in Eq.~21! reduces to that for two
rods@see Eq.~6! in Ref. @6##. The last term is the self-energ
that must be subtracted from the free energy. Note that
free energy in Eq.~21! cannot be written as the pairwise su
of the two-rod interaction. The electrostatic free energy c
only be given as a sum of pair interactions when we ret
only the leading term in the expansion of Eq.~21! in powers
of dq2 ~i.e., up to monopole-dipole interactions!. Podgornik
and Parsegian@23# also concluded that pairwise additivity i
invalid, based on an analysis that includes up to dipo
dipole interactions@up to the second term in the expansion
Eq. ~21!#; in contrast, our technique includes all higher mu
tipole interactions, which are required because the multip
expansion diverges at low temperature or short rod sep
tions.
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The electrostatic free energy in Eq.~21! depends on the
average number of condensed counterions per monomerf c .
We could simply use the Manning criterion@18# to set f c .
However, that criterion applies only to a single, infinite
long rod, and the proximity of other rods should enhan
counterion condensation. We therefore solve forf c self-
consistently. We enclose the bundle in a large cylinder
radiusL' and lengthL, and construct the total free energy
terms of the number of condensed and free counterions.
then equate the chemical potentials of condensed and
counterions. The total free energy valid forks

21!L is then

bFtotal5N fcS ln
f cMv0

Lb2
21D 1S N f f1

1

2
nsbL'

2 D
3F lnS N f fM

LL'
2

1
ns

2 D v021G1
1

2
nbL'

2 ~ ln nv0/221!

2NZql̃ Bf fK0~ksb!1bFbundle2
LL'

2

12p
ks

3 , ~22!

wheref f5( f 02Z fc)/Z is the number of free counterions p
monomer andv054/3pr c

3 is the counterion volume. The
first three terms in Eq.~22! correspond to the entropy o
mixing; the first describes the entropy of condensed cou
rions confined to a volume which is smaller than the to
available space by a factor ofb2/L'

2 , the second term corre
sponds to the mobile cations and the third term correspo
to mobile anions. The last term is the standard Debye-Hu¨ckel
result for the salt ions.

The fourth term in Eq.~22! deserves some detailed di
cussion. It is the contribution to the electrostatic free ene
from condensed counterions and rods given in Eq.~21!. This
term is needed to set the reference potential for free cou
rions; if the interaction between a rod and a free counter
is set to zero when they are separated by a distance m
larger thanks

21 , then this term is the decrease in free ene
due to condensation. Since we enforce condensation from
beginning instead of charging the rods with counterions@see
Eq. ~4!#, this term does not naturally arise from our previo
calculations. When an infinitesimal chargedq8 ~per mono-
mer! is added to a negatively charged rod of net chargeq8,
the change in the electrostatic energy of the rod is

bdE52Nl̃ Bq8dq8E
2`

`

dz
e2ksz

z
. ~23!

This charging process continues until the rod has net ch
of q. Thus the free energy we need is an integration of
~23! overq8 from 0 toq multiplied by the number of rodsN.
This leads to the fourth term in Eq.~22!.

C. ‘‘Fermion’’ version of model

The model introduced in the previous section assum
that an indefinitely large number of counterions can be
signed to a given monomer. One can also consider a va
of this model@24,11#, where each rod consists ofM sites,
e

f

e
ee

e-
l

ds

y

te-
n
ch
y
he

ge
.

s
s-
nt

and each site can either be empty or occupied by one co
terion. In this case, the charge fluctuation is no longer giv
by Eq. ~2! but is given by

dq25Z2f c2Z2f c
2 . ~24!

Obviously, the expression for the average charge rem
unchanged;q52 f 01Z fc . The corresponding entropic fre
energy of condensed counterions per site can be obtaine
settingv0 /ab2 to unity:

bFent. cond5 f c~ ln f c21!. ~25!

The difference in the entropy of condensed counterions
negligible, because the total entropy is dominated by the
counterions. Thus, both models predict essentially the s
values forf c . The difference between the ‘‘fermion’’ mode
and the previous ‘‘boson’’ model therefore lies only in th
different expressions fordq2. Note that the ‘‘fermion’’
model predicts a weaker attraction becausedq2 is smaller in
this case. In particular, the ‘‘fermion’’ model predicts n
attraction atT50 for monovalent counterions because the
is complete condensation (f c51, or dq250), whereas the
‘‘boson’’ version yields an attraction that saturates in th
limit.

III. ASYMPTOTIC ANALYSIS OF THE FREE ENERGY

In the previous section, we derived a closed-form expr
sion for the free energy of a bundle of a fixed number
rods,N. In the asymptotic limitN→`, it turns out that the
free energy in Eq.~21! can be further simplified analytically
when the rods are parallel and infinitely long. In this sectio
we will show that the free energy per rod becom
N-independent forN@1. In other words, the free energ
Fbundle is extensive. The asymptotic analysis will justify ou
finding in Ref.@7# that the equilibrium bundle size is eithe
N51 or N5`, and that the free energyFbundle changes
monotonically withN.

At first glance, it is surprising thatFbundle is extensive,
especially when there is no added salt to screen the Coul
interactions, since the system carries finite net chargeQ that
grows linearly withN, i.e., Q5Nq. If we calculate the free
energy by summing over all pairs of rods using the effect
two-rod interaction, then we would obtain a repulsive inte
action of a bundle which increases likeNn with n.1. Thus,
the assumption of pairwise additivity leads to a superext
sive free energy. However, we showed by explicit calcu
tion of Eq.~21! in Ref. @16# that in the case of no added sa
it is possible to describe a large bundle in terms of a b
free energyFbulk and a surface free energyFsurface. In other
words, the bundle free energy forN@1 can be written as
Fbundle;NFbulk1ANFsurface, whereFbulk andFsurfaceare in-
dependent ofN. Here we will extend the analysis present
in Ref. @16# to the case of added salt.

Instead of taking the limitN→` directly to obtain the
bulk free energy per rod,Fbulk , we will define a second
system: an infinite lattice of rods made by replicating t
N-rod bundle periodically, so that the (N11)th rod has the
same charge distribution as the first one. This system
have a free energy per bundle given byFperiodic, which can
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be written as in Eq.~21! in terms of two new matrices0M
andM(kz):

0M5dq22d j' j
'8

12l̃ B(
kxky

K0~ks ,kz50,k'!

3exp@2 ik'• j'#,

M~kz!5dq22d j' j
'8

12l̃ B(
kxky

K0~ks ,kz ,k'!

3exp@2 ik'• j'#. ~26!

Here, the matrix indexj' is conjugate to the rod positions o
the lattice and assumes the values:j'5( j x , j y), where
j x , j y50,1, . . . ,AN21. Upon substitution of Eq.~26! into
Eq. ~21!, we obtain

bFperiodic5
l̃ Bq2

0K0
21~ks!12l̃ Bdq2

1
b

2 S 1

N (
k'

D
3E

2`

` dkz

2p
ln@112l̃ Bdq2K0~ks ,kz ,k'!#

2bNdq2l̃ BE
2`

` dkz

2p
K0~bAks

21kz
2!, ~27!

where k' is the wave vector conjugate to the periodica
repeated bundle:k' assumes the discrete valuesk'

5(2p/AN)(nx ,ny) wherenx ,ny50,1, . . . ,AN21. The dis-
crete Fourier transform of the modified Bessel functi
K0(Ri jAks

21kz
2) is given by

K0~ks ,kz ,k'!5 (
j xj y

AN21

K0~au j'uAks
21kz

2!exp@ ik'• j'#.

~28!

The function0K0(ks) that appears in the first term of Eq
~27! is simply 0K0(kz5k'50).

The bulk free energy can now be obtained by taking
limit of Fperiodic as N→`. To take this limit, first note tha
K0(x);(1/Ax)e2x for x@1, so that the sumK0(ks ,k,k')
and0K0(ks) both approach finite values,K0(ks ,k,k')
and0K0(ks), respectively, asN→`. Furthermore,k' be-
comes a continuous variable in the limitN→`, so we can
replace the sum (1/N)(k'

by an integral

*0
2p/a@dk' /(2p)2#@ . . . # up to a correction of order 1/N.

The resulting bulk free energy per rod is then given by

bFbulk5
l̃ Bq2

0K 0
21~ks!12l̃ Bdq2

1
b

2E0

2p/a dk'

~2p!2E2`

` dkz

2p
ln@1

12l̃ Bdq2K0~ks ,kz ,k'!#2bdq2l̃ B

3E
2`

` dkz

2p
K0~bAks

21kz
2!. ~29!
e

Thus, the free energy per rod approaches a constant, i.e
bulk free energyFbulk , in the limit of N→`, in accord with
our previous numerical results@7#. In other words, the free
energy of a lattice of rods is extensive.

The next step is to look at a very large but finite bund
and to include the contribution of the bundle surface to
free energy. Note that we have considered a square lattic
rods, so there are 4AN rods at the surface of a square bund
of dimensionsAN3AN. To study the surface tension, w
should consider the free energy difference

4ANFsurface5Fbundle2NFbulk , ~30!

and show thatFsurface is independent ofN in the limit N
→`. Here,Fbundle is given by Eq.~21! and is specified by
the two matrices0M andM (kz) defined in Eqs.~20!.

Let us first consider the difference between the free
ergy of the finite bundle and the free energy per bundle
the periodically-replicated bundle:

4ANbFdiff5bFbundle2bFperiodic

5
1

2 (
i j

@~0M21 0M 0M21! i j

2~0M21 0M0M21! i j #
q2

dq4

1
b

2E2`

` dk

2p
ln det@11M21~k!•„M ~k!

2M~k!…#. ~31!

Now note that in the limit of an infinite bundle,N→`, we
must recover0M→0M andM (k)→M(k). This enables us
to expand Fdiff in powers of 0M21

•(0M20M) and
M21(k)@M (k)2M(k)# for large N. After subtracting the
self-energy, we find

bFdiff52
1

4
l̃ Bq2S 1

112l̃ Bdq2 0K0~ks!
D 2

3Uk'

k'

•“k'
K0~ks ,k'!U

k'50

1
b

2US 1

ND(
k'

E
2`

` dkz

2p
K0~ks ,kz ,k'!

3
k'

k'

•“k'F l̃ B
2dq4K0~ks ,kz,k'!

112l̃ Bdq2K0~ks ,kz,k'!
GU . ~32!

This is a generalization of our earlier result@see Eq.~12! in
Ref. @16## to the case of added salt. Again, we can repla
(1/N)(k'

@ . . . # by *0
2p/a@dk' /(2p)3#, up to a correction of

order 1/N. We then find that

Fdiff→const3„11O~1/N!… ~33!

in the limit N→`.
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The quantityFdiff is related to the desired surface tensi
Fsurfaceby the equation

4ANFsurface54ANFdiff1Fperiodic2NFbulk . ~34!

However, by comparing Eq.~27! to Eq.~29!, we see that the
leading correction toFperiodic2NFbulk comes from replacing
the sum over discrete values ofk' by an integral. This cor-
rection is of order 1/N. Therefore,

Fperiodic5NFbulk„11O~1/N!…. ~35!

Given Eqs.~34! and~35!, we find thatFsurfaceapproaches an
N-independent constant asN→`, with corrections of order
1/AN.

In the no-salt limit,ks→0, we have shown in Ref.@16#
that the surface free energy originates only from the attr
tive interactions characterized by the charge fluctuati
dq2. This follows from the fact that0K0(ks);N in that limit
and thus the first term in Eq.~32! vanishes like 1/N2.

In summary, we can combine Eqs.~29! and~32! to write
the bundle free energyFbundle as

Fbundle>NFperiodic14ANFdiff>NFbulk14ANFsurface1O~1!,
~36!

whereFbulk andFsurfaceare independent ofN. Thus, a large
bundle can be described as the sum of a bulk free energy
a surface free energy. This result is useful to phenomenol
cal theories of bundle nucleation, etc. Why does the lo
ranged repulsion between rods not lead to super-exten
scaling of the free energy? The reason lies in the breakd
of pairwise-additivity of the effective rod-rod interaction
The long-ranged repulsion between rods is highly scree
in the explicit calculation because charge fluctuations
correlated over many rods, not just pair by pair. This res
in an extensive bundle free energy, in accord with rigoro
arguments on electrostatic systems@25#.

A. Limiting behavior of surface free energy

To test our result for the surface free energy, let us t
the limiting case of vanishing lattice constant,a→0, such
thatdq2/a2b5Z2n remains constant, wheren is the number
density of condensed counterions. This corresponds to ta
the continuum limit of the lattice of rods. In this limit, th
system reduces to a Debye-Hu¨ckel electrolyte. Then we hav
2dq2l̃ BK0(ks ,kz ,k')54p l̃ B /(a2k'

2 1a2ks
21b2kz

2). If we
use this expression in Eq.~32!, then we obtain

bFsurface;S a

bD3H dq2l̃ B if ks
2a2!dq2l̃ B

dq4l̃ B
2/ks

2a2 if ks
2a2@dq2l̃ B .

~37!

In the low salt limit, asks→0, the surface free energy pe
unit area, i.e., the surface tension, varies as (a/b)dq2l̃ B

;kc
2 , wherekc

21 is the Debye screening length associa
with condensed counterions. This agrees with an earlier
sult of Onsager@26#, which was obtained by solving th
linearized Poisson-Boltzmann equation for a Debye-Hu¨ckel
electrolyte in contact with an immiscible medium. In order
calculate the surface tension, Onsager introduced a spa
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varying screening lengthk(r ). Solving the linearized
Poisson-Boltzmann equation with a spatially varyingk(r )
was quite difficult. The alternate approach that we have p
sented here is a systematic treatment of the surface ten
using functional integral methods, and is equivalent to so
ing the linearized Poisson-Boltzmann equation with a s
function approximation to the ion density. The main adva
tage of our approach is that it can easily be applied to m
general systems such as our bundle of rods.

In the low salt limit, Eq.~37! shows that the surface fre
energy is independent of salt concentration and increases
early with the Bjerrum length. On the other hand, in the hi
salt limit, the surface free energy decreases with increas
salt concentration, and becomes negligible whenks

2a2

@dq2l̃ B . These results make physical sense. Surface eff
arise because the charge fluctuations along the rods sudd
decay to zero at the outer surface of the bundle. This gi
rise to a dipole layer at the outer boundary. In the low s
case, this dipole layer cannot polarize the surrounding s
tion, so the surface energy~in units of the thermal energy!
increases linearly with the strength of the electrostatic in
actions ~the Bjerrum length!. In the high salt case, on th
other hand, the system can lower its free energy by form
an induced dipole layer across the boundary. In other wo
the charge fluctuations along the rods at the surface of
bundle tend to polarize the surrounding ionic solution; t
polarized solution then interacts with the charges on the ro
This is asecondorder effect, so it results in a second ord
dependence of the surface free energy on the amplitud
the charge fluctuations:bFsurface}dq4l̃ B

2 . Finally, in the ex-

treme high salt limitks
2a2@dq2l̃ B , the rods are so highly

screened that they no longer interact with each other,
there is no difference between a rod at the surface and a
deep within the bundle. In that case, the surface free ene
of the bundle vanishes. The conditionks

2a2@dq2l̃ B is
equivalent to the conditionks@kc , wherekc

21 is the screen-
ing length due to condensed counterions:kc

2

54pdq2l B /a2b. In other words, if the screening due to sa
overwhelms the screening due to condensed counterion
the rods, then the surface free energy is negligible.

B. When are the interactions pairwise-additive?

From our analysis of the surface free energy, it is cle
that many-body effects are unimportant when the salt c
centration is high enough. This is because the salt screen
correlations between charges over many rods that are res
sible for the breakdown of pairwise additivity@23#. Thus, we
should recover pairwise additivity at high ionic strength. O
the other hand, if there are no charge fluctuations along
rods, dq250, then the interaction between rods is pure
repulsive and pairwise additivity should again be val
Therefore the criterion for pairwise additivity should depe
on bothks anddq2. In fact, we find that pairwise additivity
is valid when

dq2l̃ B!ks
2a2. ~38!

Under these conditions, the expansion of the attractive
of the free energy in powers ofdq2l̃ B is convergent@i.e., the
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multipole expansion is convergent; see Eq.~21!#. Note that
under the conditions of Eq.~38!, the surface free energy i
negligible @see Eq.~37!#. This is not surprising; when the
interactions are so highly screened that inter-rod charge
relations can be neglected, then pairwise additivity is rec
ered and there is no difference between surface rods and
deep inside the bundle.

We note that the criterion Eq.~38! always corresponds to
the regime where the interactions between rods are repul
For the caseks50.1 Å21, pairwise additivity is valid when
a@30 Å. When ks50.001 Å21, pairwise additivity is
valid whena@3000 Å. In both cases, the interactions b
tween rods are repulsive and extremely weak in this regi
Thus, whenever the counterion-mediated interactions areat-
tractive, pairwise additivity is not valid.

Recently, Shklovskii argued that the validity of pairwis
additivity should also depend on the rod radius. His ar
ments are based on the ionic crystal picture of a salt-
solution, where the counterions form a Wigner crystal in
background provided by the charged rods@10#. He distin-
guishes between two regimes characterized by the dim
sionless parameterZb/r rod, wherer rod is the rod radius. He
argues that the interaction is not pairwise-additive
Zb/r rod@1. In the regime whereZb/r rod!1, on the other
hand, he argues that the counterion-mediated interactio
pairwise-additive because the rod radius is sufficiently la
compared to the lattice spacing that only nearest-neigh
rods interact via their facing surfaces, which are almost p
nar. It is not straightforward to compare our criterion to h
since we assume infinitely thin rods and he assumes
added salt. In order to compare our results, we now mo
our criterion to include the nonzero rod radius. Note that
fixed temperature, counterion valence and linear charge s
ration b, the charge fluctuations per monomer remain fix
as the rod radius increases. However, the surface area o
monomer increases, so the charge fluctuation/surface
decreases. This leads to a decrease in the effective valu
dq2. As a result, the regime over which the rod-rod intera
tion is pairwise-additive increases asr rod increases. Using
this argument, our criterion for pairwise-additivity can b
generalized to

dq2l̃ B!S a2

L2D S r rod

b D , k→0. ~39!

For finite dq2, this inequality can be met only when th
radius of rods is much larger than the length of rods. O
criterion is therefore much more stringent than Shklovsk
and depends on the length of the rods as well as on t
radius.

Why is our criterion so different from Shklovskii’s? Shk
lovskii assumes that as long as two rods of nonzero ra
are sufficiently close so that their facing surfaces are ne
planar, then the interaction can be described as a pair
sum of attractions described by correlated charge distr
tions on two-dimensional surfaces~the two-surface calcula
tion has been carried out by Rouzina and Bloomfield@9#!. It
is not clear that this guarantees pairwise-additivity of rod-
interactions, however. Consider three rods, A, B, and C,
triangular arrangement. Rods A and B, B and C, and C an
all interact along their facing surfaces. Shklovskii assum
r-
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that the AB, BC, and CA interactions are pairwise additiv
However, the charge distribution on the surface of rod A t
interacts with rod B could be correlated with the charge d
tribution on the surface of rod A that interacts with rod
This correlation would lead to a breakdown of pairwis
additivity. This could be the origin of the discrepancy b
tween our criterion and Shklovskii’s.

IV. TEMPERATURE DEPENDENCE OF ATTRACTION

In all of our earlier calculations, we fixed the temperatu
and studied the dependence of counterion-mediated inte
tions on the lattice spacing, screening length, counterion
lency, and other parameters. Here, we focus on the temp
ture dependence, which has been controversial in
literature. In the discussion that follows, we will imagine th
we can vary temperature without varying the dielectric co
stant. In reality, the dielectric constant tends to vary as 1T,
so that the Bjerrum length,l B5e2/ekBT is roughly con-
stant. For our purposes, however, we will assume that lo
ering T is equivalent to raising the Bjerrum length.

Brownian dynamics simulations by Gro”nbech-Jensen an
coworkers @8# show unambiguously that the counterio
mediated attraction between two rods is strongest at z
temperature, and weakens with increasing temperature.
is in accord with the picture proposed by Rouzina a
Bloomfield @9#, where the attraction originates from the fa
that the system forms an ionic crystal at zero temperat
Thus, the counterions form an ordered array between the
rods that brings them together at low temperatures.

At higher temperatures, however, this ionic crystal me
and the distribution of counterions along the rods is m
liquidlike than solidlike. At these temperatures, one can
velop a complementary picture, where nonuniformities of
charge distribution along the rods become correlated fr
one rod to another, and lead to attractions. It has often b
argued that this picture, since it is based on thermal fluct
tions of the charge distribution, should lead to an attract
that increaseswith increasing temperature, in contradictio
with the simulations. In fact, this was the conclusion
Oosawa@4#, who first proposed the picture. This argument
erroneous, however. The temperature dependence is m
complex because the attraction also relies oncorrelations
between the charge distributions on the two rods; elec
static interactions between the rods give rise to the corr
tion, whereas thermal fluctuations tend to decrease the
relation. Barrat and Joanny@5# introduced a perturbation
expansion in powers ofdq2l̃ B and showed that to secon
order, the inter-rod correlation leads to an attraction that
tually increases with decreasing temperature. Another fa
that works in this direction is the effect of temperature
counterion condensation. As the temperature decreases
amount of counterion condensation increases, so the
chargeq per monomer decreases. As a result, the repuls
between the rods decreases, giving an effective attrac
that increases with decreasing temperature.

Someone familiar with Debye-Hu¨ckel theory, which is
also based on a charge fluctuation picture, might consider
temperature dependence to be trivial. In an electrolyte s
tion, the Debye-Hu¨ckel limiting law yields a free energy tha
varies as -Al B;21/AT. Thus, Debye-Hu¨ckel theory yields
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an attraction that increases with decreasing temperature.
might therefore expect that our calculation, where we c
sider one-dimensional Debye-Hu¨ckel systems interacting
with themselves and with each other via three-dimensio
Debye-Hückel interactions, to yield a similar result. It turn
out, however, that the situation in our rod system is not qu
so simple. Note that the form of Eq.~6! in Ref. @6# leads to
an attraction thatvanishesat T50. The exact solution of a
similar model, on the other hand, leads to an attraction tha
strongest atT50 @11#. We find that the origin of the discrep
ancy lies in our assumption that the ion radius is zero. In
system, charges on different rods are discrete because
rods are placed at discrete lattice points. It turns out to
important to treat intra-rod charge correlations at the sa
level, so that charges on the same rod are also discrete

In an earlier paper@13#, we showed that we can captu
the correct temperature behavior of the charge correla
function if we incorporate the nonzero radius of the io
along the rods. The most straightforward way to include
ionic radius along the rods is to allow short-ranged cha
correlations over the ionic size. We introduce the on
dimensional structure factor for a segment of lengthD @13#:
g(s2s8)5Q(us2s8u2D)/D. Given this structure factor
we found that the charge correlations along the axis o
given rod are oscillatory with an exponential decay. As
temperature is lowered, the exponential decay length
creases, so that the correlations become longer-ranged
nally, at a very low temperature, the decay length diverg
This signals the spinodal to the ionic crystal; this is whe
the high-temperature ‘‘liquidlike’’ phase becomes unsta
to an ionic crystal. Thus, we were able to show that o
approach is fully compatible with the low temperature p
ture proposed by Rouzina and Bloomfield and oth
@9,8,10#.

Here, we extend the analysis in Ref.@13# to the free en-
ergy. When we include the nonzero ionic size, the attrac
term in the free energy@the second term in Eq.~14!# be-
comes

1

2
tr ln@11bdq2v̄#→

1

2
tr ln@11bdq2gv̄#

5(
is

(
l 50

`
~21! l 11

l
~bdq2! l

„~ v̄g! l
…is,is ,

~40!

where g is a matrix defined by gis, js85d i j Q(us8
2su2D)/D. Here,Q(x) is the step function. In the case o
parallel, infinitely long rods, we can Fourier transform in t
z direction as before, and we find that the free energy o
bundle is still given by Eq.~21! except that the matrixM (k)
is now given by

dq2Mi j ~kz!→d i j 12l̃ Bdq2g~kz!K0~Ri jAks
21kz

2!,
~41!

whereg(kz)5sinkzD/kzD is the Fourier transform ofQ(us8
2su2D)/D. Note that the repulsive part of the free energ
namely the first term in Eq.~21!, is unaffected by the inclu-
ne
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sion of the nonzero ion radius. This is because the repul
term is governed by the zero-kz component ofMi j (kz), and
g(kz50)[1.

We now use Eq.~41! to compute the bundle free energ
as a function of temperature, or equivalently, of the Bjerru
lengthl B . In Figs. 1 and 2, we have plotted the free ener
of a 16-rod bundle as a function of the lattice spacinga for

FIG. 1. Temperature dependence of the attraction~low salt!. We
have plotted the free energy per monomer per rod,Fbundle, as a
function of a, for a 16-rod bundle on a square lattice at low sa
k50.001 Å21. The reference temperature is room temperat
(300 K). There are three curves corresponding to different te
peratures:l B56 Å ~solid!, l B59 Å ~dashed!, and l B512 Å
~dotted!. Note that the attraction is strongest at small lattice sp
ings a for the largest value ofl B ~the lowest temperature!. How-
ever, the trend reverses at higher values ofa; this is an artifact of
the way in which we introduce the nonzero ion radius.

FIG. 2. Temperature dependence of the attraction~high salt!.
We have plotted the free energy per monomer per rod,Fbundle, as a
function of a, for a 16-rod bundle on a square lattice at high sa
k50.1 Å21. The reference temperature is room temperature. A
Fig. 1, there are three curves corresponding to different temp
tures:l B56 Å ~solid!, l B59 Å ~dashed!, and l B512 Å ~dot-
ted!. The main effect of lowering temperature is to increase
amount of counterion condensation; this lowers the repulsive
rier.
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812 PRE 60B.-Y. HA AND ANDREA J. LIU
three different values ofl B . Our parameters areb
51.7 Å, M5105, Z52, andD54.2 Å. The free energy is
plotted in units of the thermal energy at room temperat
(T5300 K). First consider the behavior at low salt (k
50.001 Å21) described by Fig. 1. We find that the intera
tion between rods becomes more attractive asl B increases
(T decreases!, for small values of the lattice constanta.
However, the attraction is weaker asl B increases whena is
large. This is probably an artifact of our approximation f
the nonzero ion size, as we discuss further below. Note
our curves look different from the simulation results@8# be-
cause we have not included a short-ranged excluded vol
repulsion between the rods and counterions. As a result
free energy becomes increasingly attractive asa decreases
instead of reaching a minimum and becoming repulsive
very small a. Because of this, we cannot extract the fr
energy at the minimum. Nevertheless, the fact that the att
tion grows asl B increases for smalla suggests that the
minimum is deeper at highl B , or equivalently, lowT, in
agreement with the simulations.

At high salt concentrations (ks50.1 Å21), Fig. 2 shows
that the system develops a significant barrier in the free
ergy @7#. As l B is increased, the barrier is lowered and t
attraction increases. This is again consistent with the
temperature ionic crystal picture. Note that the repulsive b
rier decreases with increasingl B mainly because the amoun
of counterion condensation increases, and the net ch
therefore decreases.

We now turn to the potentially disturbing result that t
attraction appears to weaken with decreasingT at large lat-
tice spacinga of the bundle. Is it possible that the origin o
this unphysical result is the Gaussian approximation~random
phase approximation!? We believe that the problem lies i
the way in which we have included the nonzero ionic s
through a one-dimensional form factor. Instead of doing
perturbative calculation, we could carry out a self-consist
calculation for the charge structure. The net result would
to replace the one-dimensional form factorg(s) with the
charge correlation function, which would be solved for se
consistently. Such an approach would lead to a more a
rate description of the system. However, it would not aff
our most important result, which is that the equilibriu
bundle size is infinite@7#. This is because the attraction wi
still be short-ranged, while the repulsion will be unaffect
by the form of g(s) becauseg(kz50) is still unity. The
requirement thatg(kz50)51 is known for electrolyte solu-
tions as the Stillinger-Lovett second moment condition@27#.

V. DEPENDENCE ON LATTICE STRUCTURE

In all of the calculations so far, we assumed that the r
in the bundle were organized into a square lattice. This is
unphysical choice of lattice structure; the true structure
hexagonal@17#. It is important to note that our model i
unphysical in that condensed counterions are placed dire
on the rod, leading to charge fluctuations along the rod. I
hexagonal packing, the anticorrelation between charges
neighboring rods leads to frustration. In reality, the coun
rions sit in between the rods, so there is no frustration w
the rods are hexagonally packed. The advantage of a sq
lattice is that it avoids the unphysical consequences of f
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tration incurred by the hexagonal lattice within our model.
is, however, worthwhile to compare the free energy o
square-lattice bundle with that of a hexagonal-lattice bund
This comparison is shown in Fig. 3~the thin solid curves
marked with squares represent results for the square lat
while the thick solid lines represent results for the hexago
lattice!. Note that free energy is somewhat lower for t
hexagonal lattice, showing that the hexagonal lattice is m
stable even though there is frustration. We have plotted
screened repulsive and attractive contributions separa
dashed and dotted curves, respectively! to show that while
the repulsion is slightly stronger for the hexagonal lattice,
expected, the attraction is significantly stronger also, lead
to a lower free energy for the hexagonal case. It is not
surprising that frustration does not prevent the hexago
lattice from being more stable, since we are not at extrem
low temperatures. For our parameters, the ordering of
counterions along the rods is liquidlike, not solidlike, and t
anticorrelation in charge from one rod to the next is not t
large, so the effects of frustration are relatively weak.

VI. SUMMARY

The general approach that we have adopted, of descri
the rods with associated condensed counterions as
dimensional Debye-Hu¨ckel systems coupled to each oth
through a three-dimensional Debye-Hu¨ckel ionic solution,
relies on the first term in a perturbation~loop! expansion that
probably diverges in the regime of interest. However, go
approximations can be useful beyond their range of valid

FIG. 3. Dependence on lattice structure. We have plotted
free energy of a bundle,Fbundle, as a function of the number of rod
N in the bundle, for two different lattice structures: hexagonal~thick
curves! and square~thin curves with squares!. The lattice constant
is a530 Å, the salt concentration isks50.07 Å21, and the Bjer-
rum length is 7.1 Å. The solid lines correspond to the total fr
energyFbundle. We have also plotted the attractive and repuls
contributions separately, as the dotted and dashed curves, re
tively. Note that the magnitude of the repulsion is very similar f
both lattice structures, but the attractive contribution is larger
the hexagonal lattice. This is what makes the hexagonal lattice m
stable.
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The important question is: what physics is left out by o
description? In the case ofsimpleDebye-Hückel theory, two
important qualitative effects are left out: ionic associatio
~counterion condensation! and the possibility of oscillatory
charge correlations. We have gone beyond the simple th
by including counterion condensation within a two-sta
model. We have also shown that it is important to include
nonzero ionic radius, so that the charge distribution along
rod is discrete, not continuous. This leads to qualitativ
correct behavior in the charge correlations@13#, which are
oscillatory with an exponential decay length that increa
with decreasing temperature, as well as the correct temp
ture trend at small separations of the rods. Thus, altho
our approximations will not lead toquantitativelyaccurate
behavior at low temperatures, they predict the correctquali-
tative behavior.

Since our approach predicts a transition to an ionic cry
at low temperatures, it bridges the gap between the ‘‘cha
fluctuation’’ picture and the zero temperature ‘‘ionic cry
tal’’ picture. However, this is mainly a conceptual adva
tage: our approach is not the best one at extremely low t
peratures, because the model itself is not accurate there
ge
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condensed counterions siton the rods in our model, wherea
they really should sit in between the rods. In other words,
structure of the ionic crystal is not captured correctly by t
model. This is probably a source of greater quantitative e
at low temperatures than is the Gaussian approximation.

The main advantage of the formulation presented her
that it leads to a tractable analysis of the many-rod proble
This is especially important because many-rod interacti
lead to qualitatively different behavior than is predicted
the pairwise sum of two-rod interactions@7#. Moreover, it
shows that for large bundles, the simple approach of trea
the bundle free energy as the sum of a bulk free energy
a surface free energy is valid. This is important to pheno
enological treatments of bundles. Finally, our formulati
can be used to study questions relevant to kinetics, suc
the energetic factors that govern the kinetics of bundle f
mation @15#.
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